Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Zoolog Sci ; 29(10): 714-24, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23030345

RESUMO

DNA-barcoding has recently attracted considerable attention due to its potential utility in aiding in species identification and discovery through the use of a short standardized sequence of mitochondrial DNA. Nevertheless, despite the fact that this technology has been proven a useful tool in several animal taxa, it also demonstrated limitations that may hinder correct application. Thus, its validity needs to be empirically evaluated in each taxonomic category before forward implementation. As the use of DNA barcoding within Palaemonidae may be of special interest, given its great interspecific morphological conservatism associated with considerable intraspecific morphological variation, we analyze here the potential of this technology in distinguishing and recovering some taxonomic boundaries within this family. We asked whether two GenBank-retrieved sets of COI sequences encompassing the conventional Barcode and Jerry-Pat regions possess the desired properties of reciprocal monophyly among species, and existence of a barcoding gap between intra- and interspecific variations, after performing a careful analysis of numt (nuclear mitochondrial DNA) contamination. These analyses revealed nine non-monophyletic species, with some cases of divergent intraspecific sequences, contrasted with interspecific similarity attained in others. Moreover, we were unable to identify any barcoding gap between intraspecific and interspecific divergences within Palaemonidae, although a threshold of 0.18 substitutions per site would differentiate intraspecific and congeneric divergences in 95% of the cases for the barcoding region. A fraction of the overlap could be certainly attributed to artifacts related to poor taxonomy, but even from this perspective DNA barcoding studies may help to uncover previously disregarded taxonomic and evolutionary issues.


Assuntos
Código de Barras de DNA Taxonômico , Palaemonidae/genética , Animais , Filogenia , Especificidade da Espécie
2.
Genet. mol. biol ; 31(1): 58-63, 2008. ilus, tab
Artigo em Inglês | LILACS | ID: lil-476152

RESUMO

Protocols for microsatellite-enrichment libraries have been widely applied to several species in order to supply the most informative molecular markers for population and inbreeding studies. One drawback of these protocols is the ratio of designed primer pairs that fail to amplify the expected fragment, even after exhaustive optimization attempts. A possible cause of unsuccessful microsatellite primers may be that such loci are artifacts resulting from chimeric PCR products, instead of real genomic sequences. The microsatellite-enriched library constructed for Aegla longirostri (Crustacea, Decapoda, Anomura) showed that 29 percent of sequenced clones were chimeric products because these sequences shared one of the flanking regions around the same repeat motif but not the other. PCR-mediated recombination is a well-known event described for several procedures in which related sequences are used as a template. We have associated this phenomenon with microsatellite marker development. This study explained the high ratio of recombinant sequences generated in the A. longirostri microsatellite-enriched library. We discuss the mechanism and implications of PCR chimeric-product formation during microsatellite isolation.


Assuntos
Animais , Anomuros/genética , Repetições de Microssatélites , Recombinação Genética , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...